
Solar Energy 74 (2003) 409–415

M aximizing PV peak shaving with solar load control: validation
of a web-based economic evaluation tool

a , b c d*Richard Perez , Tom Hoff , Christy Herig , Jigar Shah
aASRC, The University at Albany, Albany, NY, USA

bClean Power Research, Napa, CA, USA
cNREL, Golden, CO, USA

dBP Solar, Baltimore, MD, USA

Received 6 May 2002; received in revised form 11 March 2003; accepted 25 April 2003

Abstract

We present an evaluation of a new version of the web-based clean power estimator (CPE) capable of evaluating the
effectiveness and value of solar load control (SLC) for commercial applications in the US. Three experimental building case
studies are used as a validation benchmark. The selected buildings include a large office building near New York City, a
department store in Long Island, and another department store in Hawaii. The results of the CPE calculations are compared
against results obtained using actual building load and colocated hourly actual solar radiation data.
   2003 Elsevier Ltd. All rights reserved.
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1 . Introduction 2000). Although it may be considered as a truism that
controlling a building’s load can make up for any noncon-
trollable power source deficit, the fact that—in the case ofCommercial customer-sited PV represents a valuable
PV—only a benign amount of load control can deliver fullsector for PV deployment because:
capacity equivalent is less evident.• These customer-side-of-the-meter applications are val-

The objective of this paper is to evaluate one of the toolsued against retail energy rates
capable of gauging the performance and economics of• Thanks to the natural PV-load correlation characterizing
solar load control.many commercial buildings (e.g. seePerez et al., 1997,

1999), these applications also capture value from billed
load demand reduction;

2 . Methods• Commercial operators can take advantage of local and
national financial benefits available to businesses, such

2 .1. Solar load controlas accelerated depreciation, tax credits, or localized
incentives (seeDSIRE (2003),for instance, for a list of

The good correlation observed between PV output andincentives available in the USA).
commercial building loads leads to demand reduction at

It has been shown that the second value element—peak retail demand rates (e.g. seePerez et al., 1997). However,
load reduction—could be enhanced substantially with this correlation is not perfect. Since demand charges are
minor levels of end-use solar load control (Perez et al., assessed based on the highest load during some time

period, a cloud passing over the PV system during a peak
load event, or a slight offset between building peak and*Author to whom correspondence should be addressed. Tel.:
solar peak could substantially reduce the demand reduction11-518-437-8751; fax:11-518-437-8758.

E-mail address: perez@asrc.cestm.albany.edu(R. Perez). provided by the PV system.
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Fig. 1. Solar load control principle.

One remedy is to include a device called a solar load evaluations based upon a comprehensive base utility retail
rates and local /national incentives. Residential versions ofcontroller (SLC) with the PV system. The SLC enhances
the program have been developed for several countriespeak demand reduction by mitigating end-use load drivers
(Bpsolar, 2002), while a commercial version of thein response to critical load/ temperature situations. As
program is available for the US (e.g.CEC, 2002).shown inFig. 1,a small amount of load control (right) can

The standard CPE inputs include PV system size, arraysubstantially increase demand reduction achieved with PV
geometry, cost, location, customer economic profile andalone (center) if conditions are not ideal (as shown left).
system financing options. Corresponding utility rates andThermostat setting adjustment during the cooling season
incentives are determined from the user-selected location.is an effective means of implementing solar load control.
Location also determines the solar resource that is im-This solution is attractive, because, as shown inFig. 4,
bedded within the CPE based upon published TMY-typethere is a strong correlation between building load and
data.temperature above a threshold corresponding to a build-

The additional SLC-specific inputs are:ing’s cooling balance point. Furthermore, there is a strong
time of day/day of week component to the relationship as 1. The maximum daily discomfort a building occupant is
well (Perez et al., 2001b). SLC prototype applications willing to allow (in degree–hours of temperature in-
based on thermostat adjustment have already been carried crease)
out with satisfactory results (Perez et al., 2000). The 2. Seasonal building load profiles (defaults are available)
present evaluation of the CPE focuses on this temperature- 3. The building’s cooling balance point (i.e. the outdoor
based type of load control. temperature above which the building requires cooling)

and
4. The building’s load-temperature coefficient—i.e. the

2 .2. Clean power estimator load-temperature trend illustrated inFig. 4; this last
input may be estimated from past bills by comparing

The CPE (Hoff, 1999) is a web-based program designed highest summer demand and off-season demand (de-
to perform customized customer-sited PV economic faults are available as well).

 

Fig. 2. Observed and modeled hourly clearness index standard deviation–amplitude—from the daily averaged valued as a function of the
latter.
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Based on this set of inputs the program automatically where hourly load data were available and where site / time
calculates demand reduction. The effectiveness and value coincident solar resource data could be obtained either
of load control is assessed by running the program again from colocated solar radiation measurements or from
without the SLC and comparing results. satellite remote sensing (Perez et al., 2001c).

The SLC calculations outlined below are based on The buildings include a large air-conditioned office
site-specific 8760-h simulations (Marion and Urban, 1995). building near New York City, a department store in Long
However, in order to minimize the web transfer of so many Island, New York, and another department store in Hawaii.
data points and to facilitate the generation of the hourly The peak load profile of these buildings is shown inFig. 3.
load data, the TMY data are first condensed to a set of 365 Note the typical ‘‘9–5’’ load shape of the NYC building,
daily parameters. The data are then ‘‘reinflated’’ on the with a daytime excursion well in phase with the solar
user’s computer. The condensed TMY-based information resource. The longer operating hours of the Long Island
includes 365 daily values of (1) daily clearness index, (2) store are clearly noticeable. The Hawaii store is a 24-h
the ratio between daily clear-sky global irradiance and operation, with a small daytime peak superimposed on a
daily clear-sky irradiance on the 15th day of each month, high baseload.
(3) the daily minimum temperature and (4) the daily Load temperature responses are shown inFig. 4. The
temperature range. New York office building clearly shows a winter mode

On the host computer, the program generates hourly with little temperature dependence on the left, and a
ambient temperatures derived from the daily minimum
temperature and range following ASHRAE guidelines
(ASHRAE, 1997), as well as hourly clearness indices from  

the daily values using a semi-statistical methodology
(Perez, 2001). In a nutshell, this methodology generates
hourly indices by introducing a random Gaussian deviation
from the daily average. The amplitude of this random
deviation is a function of the daily clearness index value,
empirically derived from measured data in varied climatic
environment. This function is illustrated inFig. 2.

Hourly PV outputs are obtained by modulating the
standard (12-months324-h) average PV output tables
generated within the CPE with the hourly clearness index.

In parallel, hourly building loads are generated via a
simple linear modulation of the reference building load
profiles with hourly temperature above the building’s
balance point—using the input load temperature coefficient
specified above.

This condensed approach allows one to generate hourly
output for arbitrary PV configurations ‘‘on the fly’’, along
with time coincident building demand, using only a small
number of transferred data, and hence allowing very fast
web-based computations.

Once hourly building loads and PV outputs are com-
puted, the program calculates the monthly demand reduc-
tion resulting from PV, as well as the additional reduction
made possible by the SLC if that option is selected. The
additional load reduction from the SLC is done iteratively,
by adjusting the peak day threshold line downwards until
the selected maximum daily SLC degree2hours amount is
exhausted, following:

S max(0,(load2PV–threshold))day

5 selected degree–hours * temperature coefficient
] ]

2 .3. Experimental building data
Fig. 3. Yearly peak day load profile, PV output (at 20% penetra-
tion) and load control threshold for the selected buildings.We selected three buildings with differing characteristics
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Fig. 4. Load vs. ambient temperature signature for the selected buildings.

summer cooling mode on the right with strong temperature increase. The Long Island store also exhibits the winter
dependence. Also note the dual weekend/week-day traces, and summer modes, but no weekend trace. The Hawaii
with weekends showing little temperature-induced load store only exhibits a cooling mode signature.
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2 .4. Evaluation metrics months—this is important because demand reduction is
valued on a monthly billing cycle. PV-alone load reduction

For each building we compare results obtained with is substantial for both buildings, but tends to degrade more
actual load and solar resource data to the results obtained rapidly with penetration for the department store as a result
using the CPE. The only building specific input consists of of this building’s longer evening shoulder. PV-alone peak
average load shapes and temperature–load coefficients. load reduction is not as strong for the Hawaii building
The comparative results include: particularly as penetration increases, as would be expected

from the low daily load excursion. The CPE tends to• Peak load reduction without solar load control at 5%,
overestimate peak load reduction but within reasonable10% and 20% PV penetration
limits.• Peak load reduction with solar load control set at a

Peak load reduction with SLC (Table 2): The CPEmaximum 1-day burden of 108C-hours.
correctly estimates yearly peak load reduction results for• Present value of the solar load control assuming a
the New York office building, with a small tendency30-year system life and a 7% discount rate and a 2%
toward underestimation for monthly values. Overall the tenrate of inflation, using large general service demand rate
degree—hours maximum daily SLC allowance more thanfrom the corresponding local electric utilities.
doubles the PV-alone peak load reduction. Results for the
Long Island department store are very close, both on an
annual and monthly basis. For Hawaii, the results are

3 . Validation results remarkably close on an annual basis, with a tendency to
CPE underestimation on a monthly basis.

Peak load reduction without load control (Table 1): On a Solar load control value (Table 3): The best match is
yearly basis PV peak load reduction estimated from actual obtained for the Long Island store where the CPE accu-
data is very close to CPE estimates for the two New York rately predicts the SLC value. For New York and Hawaii
buildings. Agreement is reasonable as well for individual the CPE predictions are on the conservative side par-

T able 1
Peak load reduction without solar load control

Installed Pv-size Peak load reduction without SLC (kW)

PV as % kW-ptc May Jun Jul Aug Sep Year

of peak load

NYC Building Derived from actual data

20 253 122 98 106 133 131 133

10 127 90 79 82 66 70 66

5 63 52 48 53 33 37 33

Estimated with clean power estimator

20 250 151 112 147 72 58 112

10 125 95 69 101 69 35 69

5 63 54 40 58 39 23 39

LI Store Derived from actual data

20 57 25 23 23 23

10 29 25 22 22 22

5 14 12 11 13 11

Estimated with clean power estimator

20 57 28 25 23 23

10 29 17 17 23 23

5 14 9 9 13 13

Hawaii Store Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

Derived from actual data

20 92 39 32 14 26 31 17 35 29 13 7 15 15

10 46 28 21 7 16 16 9 23 22 12 11 7 15

5 23 14 15 3 10 8 5 12 16 10 8 7 15

Estimated with clean power estimator

20 92 32 47 27 41 30 22 35 41 27 32 26 27

10 46 28 38 19 34 24 20 30 27 24 27 25 24

5 23 14 18 15 17 12 17 17 13 14 13 14 14
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T able 2
Peak load reduction with solar load control

Installed Pv-size Peak load reduction

PV as % kW-ptc with 10 deg-hours max SLC (kW)
of peak load

NYC Building Derived from actual data
20 250 252 223 237 250 271 223
10 125 169 171 162 178 203 178
5 63 125 137 120 136 161 136

Estimated with clean power estimator
20 250 250 195 221 166 140 195
10 125 165 128 149 142 111 142
5 63 115 90 110 114 92 114

LI Store May Jun Jul Aug Sep Year
Derived from actual data

20 57 49 46 45 46
10 29 35 33 40 33
5 14 25 26 37 26

Estimated with clean power estimator
20 57 51 49 49 49
10 29 38 35 37 35
5 14 30 26 29 26

Hawaii Store Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year
Derived from actual data

20 92 87 78 83 68 70 72 77 80 57 71 60 69
10 46 77 72 72 54 59 58 70 64 48 65 55 61
5 23 67 64 63 46 51 50 58 49 39 52 49 50

Estimated with clean power estimator
20 92 56 74 52 65 57 42 62 70 62 63 53 65
10 46 48 57 44 56 47 38 48 58 51 59 45 58
5 23 42 46 37 44 38 35 39 45 42 49 38 45

T able 3
Present value of solar load control

Installed Pv-size Average performance and NPV of SLC with
PV as % kW-ptc 1-day action of 10-C hours

of peak load From actual data From CPE

Monthly peak reduction (kW) Monthly peak reduction (kW)

w/o SLC with SLC NPV w/o SLC with SLC NPV

Long Island Dept. Store
20 57 24 46 $27,376 25 50 $29,455
10 29 23 36 $16,084 19 37 $21,572
5 14 12 29 $20,547 10 28 $21,777

Hawaii Dept. Store
20 92 23 73 $102,725 33 60 $56,613
10 46 16 63 $97,584 27 50 $48,368
5 23 10 53 $89,557 15 41 $54,924

New York Office Building
20 250 120 247 $173,548 108 194 $116,637
10 125 76 177 $133,929 74 139 $88,018
5 63 43 136 $123,206 43 104 $82,888
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ticularly in Hawaii, where the Clean Power Estimator profiles with narrow secondary peaks tend to favor the
overestimates PV-alone peak load reduction, while it effectiveness of load control.
underestimates the PV1SLC reduction, thereby ‘‘squeez-
ing’’ the SLC’s impact. Overall however, the CPE predic-
tions remain representative of the solar load control value. A cknowledgements

This work is made possible thanks to funding from
4 . Discussion NREL (NAD-2-31904-01), following upon initial funding

from NYSERDA.
Two important issues are highlighted by the present

analysis: (1) The performance of solar load control as a PV
peak shaving enhancer; (2) the performance of the clean
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